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“Pressing a suit,” writes Gordon Raisbeck, “does not mean ‘the
same thing to a lawyer that it does to a tailor. And information does
not mean the same thing to a communications engineer that it
does to a police detective. There is no reason to expect anyone
to know what the word information means toan information theorist
unless he has been told.”

This book is an introductory essay “on information theory for
scientists and engineers of all disciplines who have no specialized
knowledge of statistical information theory. It defines and explains
in simple terms some fundamental concepts of information theory
and, in particular, quantity of information and channel capacity.
Thé author then uses these concepls to make quantitative estimates
of the performance of several common information transmission
systems and to analyze the Hum;o::,:ﬁ.c of search and detection
systems.
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Channel Capacity

3.1  Channel Capacity of an Analog Channel *

In the coding theorem stated in the previous section, we have
implicitly defined the channel capacity of a channel: If a channel
can transmit. C binary digits per second (but no more), its channel
capacity is C. It is easy to apply this definition 1o a channel which
lransmits strings ol zeros and ones al a fixed rate, as in the pre-
vious example. It is equally easy to apply it to a teletypewriter
transmission channel which transmits sequences of letters and
spaces al a rate fixed by the terminal equipment. But this is not

* This chapter attempts to explain in simple terms some of the important
¢ T :
results of ““Communication in the Presence of Noise,” by C. E. Shannon,

Proc. IRE, 47, 10-21 (1959).
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‘really very useful, because there has never been very much
doubt about the capacity of such a channel. Suppose we have

a more: general channel: How:do- we -determine its: channel ,

capacity?

This question really hinges on a determination of how:many
distinguishable signals the channel can transmit. To answer this
question, we would like to have a way of identifying individual
signals and distinguishing them one from another. What we really
need is a catalog of signals.

Let us take as an example a channel capable of transmitting

continuous waves with a finite bandwidth, free of distortion, but
with uniform Gaussian noise of known power. Let us now identify
and catalog the signals which can be transmitlied through this
channel.
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Figure 3.1 Sampling of a band-limited function of bandwidth W.

We can get immediate help from the sampling theorem, a
purely mathematical theorem now well-known in the communica-
tion art, which will be stated here without proof (see Figure 3.1).
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1If a function of time f(z) contains no frequencies higher ‘than
W cycles per second, the function is uniquely determined by giy-
ing its ordinates at a series of points spaced 1/(2) seconds apart.

¥ d=,/ X2

Figure 3.2 Multidimensional geometry.

If we now let 7 be the bandwidth of the communication chan-
nel in question, we can identify any signal which the channel can
transmit with a sequence of ordinates spaced 1/(2W) seconds
apart. If we take a piece of this signal lasting only a finite time,
say T, then the number of ordinates falling in this time range
is 2TW.

We can now introduce some geometrical ideas 1o help us along
with the cataloging process (Figure 3.2). A quantity which is
identified by one number can be represented as a point on the
straight line. A quantity identified by two numbers can be repre-
sented by a point on a plane: This is the familiar procedure used
to plot graphs. A quantity identified by three numbers can he
represented by a point in three-dimensional space. Similarly, our
signal identified by 2T numbers can be identified with a point
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in a (necessarily imaginary) geometrical space of 2T dimen-
sions. We imagine the 2TV identifying numbers to be the coordi-
nates of a point, measured along 2T mutually perpendicular
axes.

If we compute energy E in the signal, we find, excepl for a

scale factor,* that
s “_. 2
£ =g 2

where x, is the nth coordinate, that is, the nth sample of f(z). If
we compute the distance from the origin to a point in the space
which represents the same signal, we find

d =V %2

Il

Thus
d: = 2WE

2WTP

where P is the signal power. In other words, in this geometric
visualization of continuous signals, geometrical distance is pro-
portional to the square root of the power. The distance between
two points in space is proportional to the square root of the power
of the difference of the two signals which the points represent.
Signals of power less than P all lie within the sphere of radius
d = V2WTP.

Now let us consider what happens to a signal as it goes through
our channel. In Figure 3.3, we follow the geomelric analogy, but
represent the space of 2IFT dimensions as two-dimensional space.
A given input signal or output signal is represented by a point in
the space. The distance between two points is proportional to the
square root ol the power of the difference of the two signals. As-
sume that the signal power is P and that the power added by the
noise in the channel is V. Assume that we know the position of
the point in space representing the signal before it is transmitted

*If the signal is electrical and f{t) is the instantaneous amplitude in volts,

the scale factor is the real part of the circuit admittance in mhos. All sums
are over the range (1,2T1), unless otherwise stated.
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SPACE OF 2WT DIMENS|ONS
TRANSMITTED SIGNAL
LOCUS OF RECEIVED SIGNAL

RADIUS /2ZWTN
VOLUME zT\mE._.zums.._.

RADIUS /ZWT(P F N)
VOLUME K(~/ZWT(P  m))2WT

Figure 3.3 Transmitted and received signals in 2/FT-dimensional
signal space.

through the channel. Where is this point at the output end of
the channel? We do not know exacily, but we know approxi-
mately: It is somewhere in a sphere of radius V2V TN cen tered
E.wEun_ the point representing the transmitted signal. In the figure
:dm sphere is represented by a stippled circle. Just as the E.m.m c\m
a cirele is proportional to the square of its radius, and the volume
of the sphere is proportional to the cube of its radius, so the
w&:ﬂa of this hypersphere is proportional to the 2T _“osﬁ, of
its radius, say,

V= K62WTW) ™"
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where K is a constant whose numerical value is not important here.

The output of this channel consists of a signal plus noise, and
has power approximately P + N. If we consider the whole family
of possible outputs, they lie in a sphere of radius V2WT(P + N).
In the figure, this is represented by the large circle. The volume
of this hypersphere is

V = K&/2WTE + ™"

where K is the same unspecified constant as before. Now let us
assume that we have a number M of transmitted signals such that
the regions of uncertainty associated with them when they are
perturbed by the noise are nonoverlapping. Then the large hyper-
sphere contains M nonoverlapping small hyperspheres. The vol-
ume of the large hypersphere is at least M times the volume of
one of the small hyperspheres. If we write down this inequality and
solve for M we get

K2ZWTE + MY > MK2WTNY
2 IT w 2w Nu Tw
M<\N"5 =\1+5

The ratio P/N is the familiar signal-to-noise ratio. We can find
the average rate of information transfer thus:

log M < TWlog (1 +

1 P
ﬂ_cmgA W log H+,~4

This gives us an upper limit for the channel capacity of this
channel.

To get a more useful result, we also need a lower limit. In
fact, the lower limit turns oul to be the same as the upper limit:
We have an equality instead of an inequality. The details of the
mathematical development are rather complex, and il is unneces-
sary to work them out here. However, we shall sketch the idea
behind the proof, because it yields some important results.
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The idea is as follows. We fix a certain number M of points in
this space as signals, without regard for spacing to avoid over-
lapping regions. A particular selection of M points constitutes a
particular code for transmitting signals. After having picked M
particular points, we compute the probability of error at the re-
ceiving end. This is the probability that a point in the space
(observed at the receiving end of the channel) which is close to
one code point is also close enough to another point so that it
might be wrongly identified. The probability of error is then aver-
aged over all possible choices of codes. After going through all
the arithmetic, geometry, and trigonometry, we obtain the follow-
ing result:

11og M > Wlog (1 + L) + i log B,
where Euy is the averaged probability of error. (Note that By, < 1,
so that log F, is negative.)

We need to observe two things about this inequality. First, for
some code choices, the error rate must be at least as low as the
average error rate. Second, if we make T sufficiently large, we can
make (1/T) log Eyv as small as desired, and hence we can make

1
ﬂﬂomﬁ

as close as we wish Lo
Wlog\l+ %

and still make the average error rale as small as we please. An-
other way of saying this is

1 P
lub log My = W log H.TH

(where lub signifies least upper bound) for any value of average
error rate, no matter how small.

We define this bound as the channel capacily, and can asserl
with confidence that there exist codes which permit transmission
al a rate as close as desired to the channel capacity,
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Chonnel ﬁm‘c\.n;{

G am Analog Chawnel

“C=W log|\ 1+ % :
with an arbitrarily small error rate.

The discussion is not complete without a study of what kind
of codes are required for signaling at a rate acceptably close to
the limit. It is obvious at once that efficient coding requires a code
whose elements, as represented by points in the signal space of
27TW dimensions, are fairly uniformly distributed. This is true
because nonuniform distribution of the points would make gaps
and holes in the signal-space representation into which further
useful code elemenls could be placed.

Furthermore, any coding that allows transmission at a rate near
the channel capacity is subject to a sudden large increase in error
rate if the noise increases slightly. This is sometimes called a-
threshold effect. The threshold effect arises because an increase
in noise reduces the channel capacity. When the actual channel
capacity is reduced below the signaling rate, Ea E?EESE.H out-
put of the channel is limited to at most the channel capacity by
the introduction of errors. As an example, let us assume a channel
with a bandwidth I of 10° cycles per second and a signal-to-noise
ratio P/N of unity. Then the channel capacity is

C= Wlog(\1+ % = 10° hits per second
Suppose we have a code allowing signaling at a rate .8C, that is,
R = 8 X 10° bits per second,
with a very small error rate. )
Now suppose the noise increases 3 decibels, so that the signal-
to-noise ratio is .5. The new channel capacity is
C = 10%log (1 4+ .5) = 5.85 X 10°
which is less than the signaling rate. To reduce the actual infor-
mation conlent of the output from 8 X 10° to 5.85 X 10° bits per
second in an ideal binary symmetric channel like that discussed
in the next section would require an error rale of .045. Any

practical equipment would make errors at a higher rate. Such an
error rate makes the equipment virtually useless lor any digital
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lransmission such as teletype or data transmission. The only
remedy is to recode the input to transmit at a lower rate.

Finally, to achieve transmission at a rate approaching the chan-
nel capacity requires a very large number M of distinet clements
in the code. A general formula for the relation of code-group size
and error rate is hard to develop, but bounds can be calculated
which show that the error rate decreases exponentially with an
exponent which is roughly proportional bhoth to the number of
bits carried by one code element and to the ratio of channel capac-
ity C to signaling rate R. As a particular example, which is typical
of the general situation, Fano* has chosen a code consisting of
M distinct orthogonal waveforms each having the same total
energy. He shows that

P(e) = K27oC/E

where
P(e) is the probability of error
K is a function of the order of unity

v is the number of binary digits consliluling a message

or
2" = M is the number of distinet messages in the alphabet
C is the channel capacity
R is the actual signaling rate

and

a is a particular function of R and C of the follow ing form

R 1 R R 1

“Te\e/"27c %=g=;
R 1 _R

= T/m i=gsd

For values of C/R greater than 4, aC/R = —1 + C/2R.
For example, to achieve an error rate Ple) = 10~ with a sig-

* Reference 1 in the Bibliography, pages 205 ff,
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naling rate 95 per cent of the capacity, that is, R/C = o.cquﬂwm
quires about 25,000 bits per message element, or about M = 107
distinct code elements. For a signaling rate 50 per cent of ﬁruma
channel capacity, about 100 bits per message element, or 10
distinct code elements are required. For signaling at 25 per cent
of capacity, 17 hits or about 100,000 distinct code elements are
required. This is beginning to be ~.mmmozmz.oq but the channel is
not used at anything close to its ideal capacity.

PROBABILITY (p}

Y
o

INPUTS QUTPUTS

Figure 3.4 A binary symmetric channel.

The choice of signal elements in Fano’s particular example
form a symmetric configuration in signal mvmna,._wc.._ are not sym-
metric about the origin, The simple step of Eo,,EMEm each of the
elements by subtracting from it the average of all the m_wE@_.;m
of the set produces another related set of code elements for which
the analogous error estimate is

Ple) = Ko 70— C/R

The distinction is of almost no interest excepl for small values
of »; it is mentioned here only because a practical instance corre-
sponding to a value » = 1 will be described later.

3.2  Channel Capacity of Discrete Channels

It was observed in Chapter 2 that the capacity Om a E.:mmrwmm
discrete channel is quite obvious. Bul no real channel is ever
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noiseless: If it were, we would attempt to lower the power or in-
crease the signaling rate, or do something else to lower the cost
and increase the efficiency, until some evidence of errors made
itself felt.

Transmission over noisy discrete channels is of practical inter-
est, and it is worthwhile to know what the channel capacity of a
noisy discrete channel ig, and what code to use to transmit at a
rale approaching the channel capacity.

The use of the word noise with respecl to a discrele channel is
a conceit of the information theorist: He does not mean ripples,
distortion, or minor imperfections in a waveform, but only dis-
turbances which cause the output to be wrongly
in simpler terms, errors.

The simplest discrete channel is a binary symmetric channel
(Figure 3.4). This channel accepts 2 code symbols, say 0 and 1,
at some rate, and puts forth the same 2 symbols at the same rate;
however, it makes mistakes, randomly distributed, with prob-
ability p independent of the incoming stream of symbols.

What is the channel capacity of such a channel? We can guess
the capacity with the following argument: Suppose we add to the
channel a fictitious “error compensator” which produces, at the
same rate as the channel, a stream of E’s and Cs, and £ every
time the channel makes an error and a ¢ when the channel is
correct. Such a device could be regarded as an
and as such has a rate

interpreted, or,

inflormation source,

H,= —p logp — (1 — p) log (1 — p) bits per symbol

In conjunction with the channel it can be used to produce an
error-free output having an information content of 1 bit per sym-
bol. If we agree that the information in the error compensator is
“used up” in correcting the errors, then we can deduce that the
channel capacity of the channel is

m.n =1- .m‘mn
=1l+plogp+ (1 —p) log (1 — p) bits per symbol

This derivation is not rigorous, but the answer is right. The
right way to go about proving the result is similar to the method
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used in the last section for analog channels: Assume an E._UJEQ
diversity of codings and find a lower :EJ A.m:& an upper r::@
for the error rate. In Reference 1 of the Bibliography it is prove

that codes exist which permil transmission through m._u_:m._.% sym-
metric channel with arbitrarily low error rate at a signaling rate
as close as desired to H. bits per symbol, and ﬁ:; no code (or at
least none of a class which seems to be m:mww_m:;% mmbﬂ_m: can
lead to signaling through this channel at a higher rate without a
ini irreducible error rate. .

_;E%WH_%HQ can be used as a plot of If, = 1 — H,, as a function

- of p. Use the scale [or 1 — H on the right, and let either p; or ps

equal p. .

mbﬁ first sight it seems implausible that any code can reduce the
error rate below p. A simple example from a n_mmm.& codes .omzom
“parity-check codes” will show how this is done. Let the sixteen

7-digit code symbols be

S

\ R AT B
A :.w__..

HOH OO HOMROFRORHFOHO
_ o OHMHOSOOHOHHOOHHC
H e ki pd = = = H O OO OO O OC
H OO QI OFOOHQOKM=O
— = = OO O C OO CQ
— OO o HHOOHHOODHFHOO
—HOHOHOFOHROMFOKFOFO

It will be observed that the digits are chosen so that

the sum of the 1st, 3rd, 5th, and 7ih digits is even,

o vhy the sum of the 2nd, 3rd, 6th, and 7th digits is even, and

Clpee Jos

the sum of the 4th, 5th, 6th, and 7th digits is even.

Sikleen m\,cuia e

& s po bl 11
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These 3 sums check are checks of oddness and evenness, and are
called parity checks: Thus this class of codes gets its name. If any
single digit in such a code group is erroneously transmitted, a new
code group is generaled which will not satisly the parity checks,
and thus the presence of an error is announced. However, this
particular code is also self-correcting: the procedure is this. If the
first parity check fails, write 1; if the second fails, write 2; and
if the third check fails, write 4; theu add. The sum is the position
of the erroneous digit. For example, suppose 0101110 is re.
ceived. The 3 parity checks fail, succeed, and fail, respectively, so
we write 1 4+ 4 = 5, showing that the fifth digit is wrong, and
that the correct block is0 1010 L 0, one of the members of the
code set. If you want to know how this particular code works, you
can read a fuller description by Hamming*; Reference 1 of the
Bibliography gives a general and systematic treatmenl to the parily
checking and other types of error-correcting codes.

Exercise
The Arithmetic of a Simple Parity Check

The numbers 0, 1, 2, 3,4, 5, 6, 7, can be writlen in binary
notation 0, 1, 10, 11, 100, 101, 110, 111. In literal notation,
n is represented by asaia0, where @ = 0 or 1, and

no=ay 224 q-21 | g4-20

For the parity-check system described above, digits are chosen
for the three parity checks according to the binary representa-
tion of their numerical position (first, second, third, etc.,
digit). The several checks include all those positions for
which ay =1, or g, = 1, or ay =1, respectively. Salisly
yoursell that you know how and why this check works.
Demonstrate your mastery by devising a check for a 15-digit
code block according 1o the same principle,

The particular parity-check code described above is useful only
for correcting single errors. If there are 2 or more errors in a

*R. W. Hamming, “Error Detecting and Error Correcting Cudes,” Bell
System Tech. J., 29, 147-160 (April, 1950).
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group, it will be decoded wrong, with a _.mmmcﬁ._m:,p gomm of 4 bits ou.m
information. Such a code is only uselul for improving a nrmﬂno.
whose error rate is already very low. For mx.m:%_m“ if .‘:5 oE.n".H.
(rate of the channel is 107® per symbol, this code 4_: mmtz;
_.:mbmammmmo: at a reduced rate with an error rate of .Hom,m. ‘_.rmzm
10~1; but if the error rate of the channel is .01, .mEurom:os 0
this code reduces the error rate only to .0085 per bit. The reason
is that single errors are corrected o::\. at the expense of allowing
double errors to spoil a whole group of 7. N i
Error-correcting codes which work E noisier channels can also
be developed, but they are complex and EQ.&OE Hr.@ nw% m_hod.“%m
are longer and more numerous. Em:ﬁ:ﬁ.ﬂo& estimates o n_E
error rate achievable with codes of a given .wm:mﬁr can be Em._. mm
but they are more complex than the particular estimate o.wm
belore for analog channels, because they depend not only on the
ratio of the signaling speed of to the nrm:.:m_ cmmmc”_.g.wﬁ &mo_oz
the noise probability of the channel itself. w:.ﬁ it is m,ﬁ_z lrue _M_m_“
the error rate achievable decreases mxwo:o::”u:w with the oo M
aroup length. An elegant geometric construction for .nE;omEme
of the exponent is found in Figures 7.3 and 7.4 of Reference 1 o
he Bibliography. .
:ﬁwo ?.Mntwm_%no:mgc@:nn ol such mm:Eﬁnm is :ﬁ: we would
like to usé codes with code groups having Hoo m_m:m._ or so. OQ.H-
eraling such a code is not difficult, but decoding F..H is ‘Ewmzm 4”2.“
complex by the fact that the decoder _.::m_ﬁ be preparec S de ,
with 219, or roughly 10%, different possible code groups. :.F.mw. not
presently practical to design decoders to wmn.».o:z wro compu tations
necessary Lo handle such a large ::::ua_.. of possible Ew.:wm. .
An escape from this dilemma is provided by mmm:msrm, ovoﬁ, _mr
(Reference 10 of the Bibliography). In a sequential code, ,E.r code
digits are not generaled or decoded m:._u_on_ﬁ_mu r.ﬁz.os@ at a EJP
Fach code digit is based jointly on the incoming _Eozsm:_c.: ._c he
coded and on the details of the code digits already m:coamg.. In
the decoding process, only two choices are available for a m%m_c
digit: Either it is right, or the channel produced an error an :m
digit it delivered is wrong. The decoder acts on the o_u:EF..:r
mmM:::..:o: that the channel is correct, but reserves the option
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to change its mind. If a sequence of
nel which is inconsistent with the L

<iown structure of the code,
the decoder goes back a few spaces and assumes 1, or 2, or the

minimum number of recent errors which “makes sense.” This is
similar to what a human being does when listening to speech:
He recognizes syllables and words, but if they don’t hang together,
he goes back in his mind and alters a few here and there so that

- the speech makes sense. A sequential coder and decoder has been
built which is capable of transmitting with an error rate of less
than 10~ through a binary symmetric cha
of .07 at the cost of a reduction of speed to one-third the symhol
rate of the channel.* The channel capacity of such a channel is
only .635 bit per symbol, so the efficiency is about

nnel with an error rate

R .333
¢~ 635~ 0%

which is more than half.

The next section will show examples of analog modulation tech-
niques for improving the transmission efficiency of ¢
none of them has an efficiency approaching this w
to-noise ratio is low. When a transmission channe
its utmost, when power is at a premium, w
ference override other consider

hannels, hut
hen the signal-
1 is strained to
hen noise and inter-

ations, a digilal transmission sys-
lem is capable of squeezing more out of a channel than w

now able to do with analog means. An exception arises when we
can use the human brain as a decoder, as in telephone transmission
and television reception, where a human receplor can get reliable
communication out of a noisy channel. But even §0, we appear Lo

be approaching the point where speech can be reduced to digits in
a form removing much of

e are

its redundancy and sent over a channel
of capacity so small that a conventionally modulated signal could
not be transmitted.

* K. E. Perry and J. M. Wozencralt, "SECO: A Sell-Regulating Error Cor-
recling  Coder-Decoder,”  International Symposium on Information Theory,
Brussels, Belgium, September .wlNHmam.

digits comes out of the chan-
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3.3 Channel Capacity of Some Representative Channels

Let us now compute the channel capacity of some typical
transmission channels. First, what is the orm:.s@_ capacity of a 100-
word-per-minute teletype (ITY) channel? This channel can trans-
mit 600 letter or space characters per minute, .9. 10 &wmnmoﬁmnm
per second. We saw belore thal the maximum E_.E.Emﬁos.mmmc.
cialed with 1 such character is 4.76 bits, so that the capacity of
this channel is 47.6 bits per second — say 50 bits per second.

What is the channel capacity of an audio circuit for the trans-
mission of speech? Being rather liberal, let us say that ﬁ.,ra Emumw.
to-noise ratio P/N is 36 decibels, and that the bandwidth W is
4500 cycles per second. Such a channel is better than a r&mmrozw
channel, and comparable to an AM broadcast radio orm.ﬁ,zm..
Working out the formula, we find that 15. channel capacity is
48,000 bits per second — let us say 50,000 bits per second.

What is the channel capacity of a channel used to transmit a
video signal? Again being rather liberal, let us say that wrm mﬁm:m._.
to-noise ratio P/N is 30 decibels, and that the vmnmg.u:r. W is
5,000,000 cycles per second. Application of .?m formula m: this
case yields a channel capacity of 50,000,000 bits per second. .

Thus, a voice circuit has about 1000 times the channel capacity
o a teletypewriter channel, and a video mw.n:: has about 1000

i the channel capacity of a voice circuit. . o
:ﬁWmﬁﬂ;mm it ﬁcmmmv_mﬁwc mﬁsﬁ_ the output of 1000 voice o_nmmww
through a single video channel, or to mm:m the c:wci of
teletypewriter circuits through one voice m:m:n&. 23 Emnmm-
sarily. As a matter of fact, many channels m.mm_mwng ?H. video trans-
mission will transmit very nearly 1000 voice n:.o:..,p.md but no o.Hﬂ@
has ever squeezed 1000 teletypewriter channels into 9.5 .40_8
channel of the kind just described and we do not expect that any-
one ever will accomplish this feat. We are z.mcm_:w mmﬂmmmm to get
16 teletype channels into such a voice 0:.9,.:«: but moan:Somm use
more elaborate equipment to get 48 circuits. By the use oH aw.
tremely elaborate terminal maiwam:f we appear P.o _.5. .mv..m 0
get 100 or even 200 teletype channels into mcor a voice circuit.

There are three reasons [or this limilation. First, an actual voice
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transmission channel usually is not an ideal channel in the sense
we have described it: uniform, invariant with time, with no per-
turbation other than random noise. Most radio and telephone
voice channels have distortion and nonrandom noise, such as
interference and cross talk, but of a nature which does not inter-
fere with human voice communication. These perturbations may
disturh other kinds of signals, and hence effectively reduce the
channel capacity. Second, when we deal with discrele signals, we
normally have a very small signaling alphabet, and at the same
time demand low error rates. For example, if we send in the form
of pulses through an apparatus that detects the pulses one at a
time, so that » = 1, about 5 pulses are required [or each character;
and if we require a character error rate ol less than 104, then
the error rate for an individual pulse must be Pe) < 2 X 10-5.
Solving the above equation of the previous section for R/C gives
R/C ~ .03; that is, the number of teletype channels which could
be multiplexed through one voice channel is about .03 X 1000 =
30. This value compares reasonably well with the observed value
of 16, especially when we consider that the voice circuit for which
the teletype multiplexer must be designed is usually a marginally
satisfactory circuit having lower signal-to-noise ratio and smaller
bandwidth than the audio circuit described above. This considera-
tion does not prevail in converting from television to voice and
back, for the human listener does not decode the speech one hit
al a time. He rather listens for whole phonemes, syllables, words,
and even sentences before committing himself finally to a decision
about what he has just heard.

Third, there is some loss, nevertheless, when a large channel is
subdivided, just as wood is wasted when a tree is sawed inlo
planks. However, in a system (such as the Bell System 1.-3 cable
carrier transmission system) which is designed to carry voice or
television signals, the trade-off is at the rate of 600 to 800 voice
channels per television channel, and most of the remaining discrep-
ancy is accounted for by “guard bands,” empty bands of frequency
nserted between adjacent channels to make channel separation
easier at the terminals.

Let us recapitulate briefly. We have defined quantity of infor-
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mation, and the rate at which information is mQ.BE.mHQ by a dis-
crete source. We have computed the information generated vw
certain kinds of sources. We have defined the channel capacity
of a discrete channel. We have defined the orm,du& capacity of a
band-limited channel with Gaussian white noise, m:.m :m.mm the
definition to compule the channel capacity of certain _c:mm‘. of
channels. We have stated in loose form a theorem about o.ﬂoo&:mu
to the effect that any channel can transmit the information from
a source which generates information at a rate less than the

channel capacity of the channel.

Exercise
The Information Capacity of a Human Being

What is the capacity of a human being as a channel for
information? A precise answer to this problem m@_umdmm on a
more detailed formulation of the problem, but even in such
general terms quantitative limils can he set.

At the upper end, consider reading. A person o.m: read
several hundred words per minute of ordinary English tlext.
(Although speed-readers can read moﬁwH.E %oc.mm:.m words
per minute, it seems they accomplish this by ﬂaEuSm..g. ﬁﬂ
us estimate a maximum of 500 words per EE:.S.E:TQE
skipping. At 5 letters per word, 1 bit per letter, this corre-
sponds to 42 bits per second. Carefully controlled psychologi-
cal experiments give about the same result.

At the other extreme, consider the feats of Masters who
are experts in simultancous _uzmmmo.E chess play. mc.nr _m
player is able to keep track of approximately 40 games simul-
taneously, and can play them out in about 6 hours. Assuming
40 (double) moves per game, we discover that the Master
learns one move every 14 seconds, well enough to carry on
sophisticated stralegy, and with a low enough cumulative
error rate so that in most exhibitions the Master never be-.
comes ‘‘confused.”

But what is the bit content of a chess move? In most cases,
the individual player’s response, which is one-hall move,
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probably contains more than 1 bit: He frequently has the
choice of half a dozen good moves, rarely fewer than 2. For
the bit content to be as low as 3 bit, there must be one re-
sponse whose probability is greater than 0.9 (see Figure 1.7).
An analyst would probably call such a response ““lorced,”
and such situations do occur from time to time. For the hit
content to exceed 4, the player must have available more
than 16 equally probable moves or the equivalent. This is
also rare. The range % to 4 hits seems to cover most situations.

A further check is possible. A well-known collection of
chess openings* contains 1215 different chess openings, ex-
clusive of footnotes and annotations. A spot check of 10
master gamest played in the year in which the collection of
openings was published (necessary because published analy-
ses of openings and openings in master tournaments are
mutually influencing) shows that the median master game fol-
lows the published openings for 31 moves. This suggesls
that 33 moves hold about as many bits as a choice among
1215 openings, giving a figure of aboul 3 bits per move, or
L.5 bits per half-move. This is consistent with the above
estimate. We can guess that the bit content increases as the
game proceeds from the opening to the middle game, then
decreases in the end game. (However, estimating the length
of a chess game at 40 moves automatically eliminates most
end games, which are likely to take place in moves 40 1o 70
or so.)

If we take a figure of 3 bits per move, the Master at simul-
taneous blindfold chess is taking in .2 bit per second, and
making full use of it.

Thus, we have the following rough estimates. A human
being can absorb .2 bit per second for a period of many hours,
keep track of it all, and make purposeful use of it. Ie can
process with his eyes and mind about 40 bits per second, pay-

* Griffith and White, revised by Reuben Fine, Modern Chess Openings,
sixth edition, David McKay, Philadelphia, 1939.

T Cames 63-72 of Keres’ Best Games of Chess, 1931-40, Fred Reinfeld,
editor, David MecKay, Philadelphia, 1942.
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ing at least some attention to all of it and making some use
of it.

3.4 Comparison of Various Practical Communication Channels

Let us now go back to the formula expressing the orw.:.E@H
capacity of a band-limited noisy channel, and do some Em:%:.?-
tion with it.* For example, how much energy must be supplied
to transmit one bit of information:

Let

P = signal spectral power density in walts per
cycle per second, or joules
W = signal bandwidth in cycles per second

Observe that we are using not power in watts, but spectral power
density in watts per cycle per second. This is oosé:mmﬁ because
in many practical cases we wish 1o consider the _“..m.cmé-m?. mﬂ. as
a parameter while keeping the spectral power densities fixed. With
this scheme of units

PW = signal power in watls

Since
C = channel capacity in bits per second

then

Nuﬁh = energy in joules per bit
Using the formula above for channel capacity C, one finds

PW _ y__ P/N

c log (1 + P/N)

where

N = noise energy in walls per cycle per second
In many praclical situations, the noise energy per unit bandwidth

* The material in this section is borrowed largely from Relerence 6 in the

Bibliography.
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is physically traceable to thermal effects, and is related to tem-
perature by the formula* ,

N=KI=137x1038T watt/cycle per second

where K is Boltzmann’s constant and T is the absolute tempera-

ture. This relation leads to the definition of an effective temperature
or notse temperature

Fw
K

even when the actual noise N may not he of thermal origin.

100

/N \
log(1+P/N}

ot e 0.693

04
-10 ) 10 20 30 40
(P/N} IN DECIBELS

Iigure 3.5 Normalized energy per bit required to signal
over a noisy channel.

The number of joules required to transmit 1 bit is directly
proportional to the noisiness or noise termperature ol the channel,
a relation which is quile understandable, and also to a certain
[unction of the signal-to-noise ratio P/N. This function is plotted
(Ingure 3.5) as a function of the signal-lo-noise ratio for easier
analysis of its behavior. It is a steadily increasing function of
P/N. Tts minimum value is 0.693, which is approached when

* At very high frequencies quantum effects may make this model of noise

inappropriate. See J. P. Gordon, “Quantum Efe
tems,” Proc. [RE, 50, 1898-1908 (1962).

cts in Communication Sys-
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P/N is zero, that is, when the signal is very small compared to
the noise. When the signal power density is as great as the noise
power density, that is, when P/N equals 1, the value of this
funclion has risen from 0.693 lo unity. Beyond that point it rises
very rapidly. For the signal-to-noise ratios that we like to think
of in communications, 30 or 40 db, this function exceeds 100.
The energy required to transmit 1 bit of information is 100 times
grealer when the signal-to-noise ratio is 30 decibels than when
the signal-to-noise ratio is less than 0 decibels.

This observation is not new, but it still comes as a shock to a
great many people. Many will insist that it is not in accordance
with experience. Why do we persist in using communication sys-
tems which use so much more energy than necessary to transmit
information?

There are three principal technical reasons why most communi-
cation systems do not approach this ideal.

First, the modulation system does not make efficient use of
bandwidth in reducing power required. .

Second, the signal in its original form does not make efficient
use of the channel provided, that is, the signal characteristics and
the channel characteristics are not well-matched.

Third, the information content of the signal is not commen-
surate with its characteristics. Most signals which it is desired
to transmit contain a great deal of unnecessary detail, that is,
they arc greatly redundanti. Redundancy may be useful, since it
adds to the reliability, or accuracy of the message, but it is not
usually present in a very efficient form.

All of these technical objections could be overcome or allevi-
ated, at least in some degree, bul the ultimate decision faced by
the communications system engineer is based not on the desire
to transmit a hit with the least possible amount of energy, but on
the desire to satisfy a particular commuunication need at the
minimum cost. In most communication systems designed in the
past, the cost of power has not been one of the principal system
cosls. However, when power does become an important parl of
the cost of the communication system, the designers will be
driven 1o systems which operate with broader bandwidth and lower
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signal-to-noise ratio, in order to make the best possible use of
power.

In electronic systems involving the use of unattended equip-
ment in satellites, power becomes an important factor because it
must be generated by solar batteries or by some other relatively
uneconomical means — uneconomical not only because of initial
cost, but also because the power supply may take up a significant

BASEBAND
SIGNAL

AMPLITUDE- ~BASEBAND b fo
MODULATED

SIGNAL for _ _ fotf ®

|.\
SUPPRESSED- RE RaNn 2

CARRIER AM a-__ _ fot1 (c}

Ere——
R —
SIHBEE F BAND 2b
SIDEBAND (d)
—_oi

-—
RF BAND b ——"

T

RF BAND (opproximate)
26(2 +1)

FREQUENCY
MODULATION

OF INDEX 2 le)

Em,:_.m 3.6 Spectrum of AM, suppressed-carrier, SSB, and 'M waves
when the baseband signal is a single cosinusoid.

part of the total available space and weight, In passive com-
munication satellite experiments such as Project ECHO, power
is once again one of the limiting factors in performance. There
is good reason to believe, therefore, that designers of communi-
cation equipment for use in active and in passive satellite com-
munication relay systems will iry to exploit the advantages of

broad bandwidth, low signal-to-noise-ratio communication in the
future.
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,
In sending signals by radio, we can use various systems of m
modulation. These require various bandwidths and powers, m._.& |
have various advantages depending upon the signal characteristics :
and system requirements. Let us see how n_wmm they approach the
ideal of using only 0.693N joule to send a bit. |

We will consider first three comparatively well-known modula- i
tion schemes: single sideband modulation (SSB), frequency modu- |
lation (FM), and frequency modulation with feedback Am‘gﬁwv.

In single sideband modulation (SSB), a constant Hm,.m_o fre-
quency is added to all frequencies in the vmmmwmﬁn— (voice, %ﬁ
or other) signal. For example, a baseband signal & cos 2rft might
be represented as a modulation wave a cos 2= (fy + f)¢, where fy |
is the carrier frequency. Figure 3.6a and d illustrates the spectra |
of such signals. The rf bandwidth required is the same as the base-
band bandwidth &. The signal-to-noise ratio in the H.mquosw:w& wm.mm. ]
band signal is the same as the rf signal-lo-noise ratio (assuming |
that no noise is added in amplification). That is,

S_P
N N

where

S = baseband signal spectrum power density
in watts per cycle per second (joules)

and P and N are defined as hefore. Thus

S
C= Wlog Hl_la

= Wlog Hn_.%
and
Py N
€ Tlog 1+ P/N)

P/N
log (1 + P/N)
The system is less efficient than the ideal by a factor
P/N
log (1 + P/N)

Il

(0.693N) | 1.44

1.44
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IFor output signal-to-noise ratios re
or television, this factor makes 1l
less efficient than the ideal.
economy of bandwidth,

In amplitude modulation (AM), the baseban

is represented by the modulated si
By trigonometric identities this s;

quired for good quality speech
1€ system several hundred times
The main advantage of SSB is its

d signal « cos 2rft
gual (1 4 & cos 2nf%) (cos 2mfor).
gnal can be shown to he equal to

(@/2) cos 2 (fo — At + cos 2rfat + (@/2) cos 2r(fo+ fir

The AM spectrum is illustrated in Figure 3.6h.
rier term cos 2xfyt can be removed by fi
carrier AM signal, whose spectrum is ill

In AM, an rf band twice as big as
quired, because two sidebands are ira
tion, AM requires thr

The constant car-
Itering to get a suppressed
ustrated in Figure 3.6¢.
the base bandwidth is re-
nsmitted. At full modula-
ee times as much power, and with ordinary
signal stalistics, many times as much power, as SSB. However,
when the carrier is suppressed, the system has the same power
requirement as SSB, but still requires iwice the bandwidth. The
chief advantage of AM over SSB is the circuit simplicity.

In frequency modulation, the baseband signal cos 2aft is rep-
resented by the modulated signal

cos (2mfot + M cos 2xft)

This cannot be expressed as a finite number of cosinusoids.
However, it can be expressed as

W Ju(M) cos [22(fy + nf)d

n=—cw

where J,(M) is the Bessel function of order n
This is illustrated in Figure 3.6e for M
matically valid and
n| > M+1, J,
ponents. This r

and argument M,
= 2. Now it is a mathe-
practically justifiable observation that when
(M) is very small, and we can ignore those com-
esults in a practical estimate of rf bandwidth.

B =2(M+ )b

Another way of justifying this heuristically is to say that the
Instantaneous carrier frequency varies from Jfo— Mf 1o fo + MF
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and carries with it a local sideband patiern om. width MF _.ﬁm.ﬁ m% Mﬁ
AM signal does. The estimate is rough, but is amply justilied by
its practical usefulness and validity,

B=2(Af+b) =2(M+ 1)b

If (P/N) is the rf carrier-to-noise power ratio, the baseband signal-
to-noise ratio (S/N) is
P

S_s(B)mwm+y

N N
This formula looks abstruse, and is somewhat difficult to n_o_._wﬁ
_urﬁ it is really quite plausible, as can be seen .T.oE the mo_zwé.ﬁzmm
argument. Suppose we imagine a system in which ._.ro. tota QEEEU
mitted power (carrier power) is fixed, but the Eomim:oﬂm :w mum.
is variable. The output of the detector is a measure 0 M Sﬁ:w-
quency deviation of the carrier, and its mgmrcp%.w is 1 M__Mw@ ore
proportional to M. The signal power S therefore varies as M*:

S« M?

On the other hand, the spectral power density P of the trans-
mitted signal is related lo the carrier power P. by

- N - |
P=p =sary+m ™ m+1

Hence

B o o

O« MM 41

7 MM+ 1)
or w

S 2

S Lot

EQEEA +1)

There only remains the evaluation of the oouw,_m:ﬁ.wm MSMHMSHM@W.
ity. A more detailed analysis shows that the .mowmom< o%.:m:ow
The analysis is complicated by the fact ,.:E_ # e .ma..: e
noise spectrum density of an M channel 1s not unilorm,

proportional to demodulated frequency. o .
" For an FM detector system to work, ﬂ.ﬁ is necessary o
carrier amplitude be large in comparison with the noise amplitude.
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It is not hard to see why: The discriminator must be able to fol-
low unambiguously the coherent pattern of peaks and dips in the
sinusoidally oscillating signal. If the noise is too big, a loop of the
sinusoid will be canceled out {rom time to time, or an exira peak
or dip added. Under these conditions, the discriminator will make
an erroncous identification of phase and will skip or add an ap-
parent full cycle. Practically speaking, this hazard is reduced to
negligible proportions only if the carrier-to-noise ratio is at least
% = 16, or 12 db

As the index M is increased, the required rf bandwidth is in-
creased; hence, the total rf noise is increased, and the minimum
permissible transmitted power is increased. On the other hand,
increasing the deviation makes the baseband signal-lo-noise ratio
greater than the carrier-to-noise ratio.

The channel capacity at minimum power level is

S
C=0bl T o
og +E.

= blog [1 + 48M3(1 + M)]

Hence, the energy per bit is

£8 . 46(1 + M)
= = (0.693N) fog [T+ 483 (T T D))

The energy is greater than the ideal of .693V by a factor

46(1 + M)
log [1 4 48M2 (1 + M)]

This factor has an optimum value of about 15, consistent with
an index M of 2 and an output S/N of 600 or 27 db. Thus, ordi-
nary FM is at best about 15 times less efficient in the use of
power than the ideal. The cfliciency of FM is relatively insensitive
to variation of index M from 1 to 4. The corresponding range of
signal-to-noise ratios is 20 1o 35 db. This range is of considerable
practical interest for voice and many other analog signals.
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Figure 3.7 shows a block diagram of frequency modulation with
feedback, also called the Chaffee system or FMFB.

W AR BANDWIDTH Bj BANDWIDTH b
I-F FILTER S—
MIXER —»  AND LIMITER bt ch
AMPLIFIER

VOLTAGE-

TUNED
OSCILLATOR

Figure 3.7 Irequency modulation with feedback (FMFB):
block diagram of a detector.

In an FMFB syvstem, we use the output of the discriminator to
cause a rommbm.omom:mﬂo_. partially to track ormﬁmom in carrier
frequency. Of course, it cannot track perfectly, for in that case
the output of the mixer would have constant frequency and za_.o_.o
would be no signal for the discriminator to detect. Hm02m49,~., if a
frequency change 6f at the detector causes m.nrm:m..w pdf in .ﬁro
voltage tuned oscillator, then the deviation M; in the intermediate
frequency amplifier is reduced to

M
S 14

Here u is completely analogous to the gain in the womm_.umow H.oov
of a linear amplifier, and the amount of feedback in decibels is

feedback = 201ogyo u db

M;

Thus we can cut down the intermediate {requency bandwidth B;
to a value
M

e SR Tt 1)
Bi=2(yo— +

Inasmuch as the II" bandwidth is less than the total r[ bandwidth,
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the noise in the I band is less than that in the rf band. We will
still need a 12-db carrier-to-noise ratio at the discriminator, but ]
the rf carrier-to-noise ratio can be less by the ratio of the IF i

bandwidth to the rf bandwidth.

SPECTRUM OF AN

FM WAVE
COS(27 fot + 2C0S 2T f1) (o)
_p_s_u_..ﬁ_.c_umq
fot3F 4
—=
FREQUENCY i
SHORT-TERM :
SPECTRAL DENSITY
QF AN FM WAVE
(b}
INSTANTANEQUS
TIME q Emocmzme.
i
-
J.._ 2b _LI
FREQUENCY

Figure 3.8 Spectrum and short-time spectral density of an F'M wave. J

Another way of expressing this idea is illustrated in Figure 3.8.
The spectrum of the FM wave, as described before, extends from
Sfo— 3f to fo+ 3f. This spectrum is illustrated in Figure 3.8a.
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However, over a short period of lime an investigation ol spectral
energy density will show the energy to be concentrated about the
instantaneous frequency in a band of breadth about 2b. This is
depicted in Figure 3.8b. A filter of bandwidth 2b located at the
right center frequency would pass almost all the signal energy.
The effect of the feedback loop in the detector is to shift the
eflective center frequency of the II" filler almost in synchronism
with the instantaneous frequency of the incoming carrier.
The minimum allowable signal-to-noise ratio now becomes

PB
NB;

An analysis like the one performed above leads to a required energy
per bit of
PB 46[M/(1 + p) + 1]

Kol 0.693 log {1 4+ 48M1 4+ M/(1 + w1}

=16

This energy is greater than the ideal by a factor

46[M/(1 4 p) + 1]
log {1 +48M°7[1 + M/(1 + p) 1}

This expression is only approximate, because when M is very
large, the minimum allowable discriminator signal-to-noise ratio
is greater than 12 decibels. When this is accounted for, this
factor is found to go asymplotically to a theoretical value of 2 as
M is increased. Experimentally, it appears that one can achicve a
value of about 3, that is, thal one can operate with only three
times the minimum theoretical power requirement given by infor-
mation theory.

That is, it is possible to receive information with a receiver
power of:

P

Il

3(0.693)CN
3(0.695) CKT, watts

where T, is the effective noise temperature, and K is Boltzmann’s
constant.

QUL
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Phase lock reception is similar to the foregoing system except
that the local oscillator is in effect made to track the received
signal in phase.

Some pulse transmission systems, such as pulse position modu-
lation, appear to be capable of as great a power efficiency as
FMFB. Whether or not they are competitive will depend upon
equipment economy and, in some cases, upon the kind of infor-
mation that is to be transmitted.

It should be noted that the channel capacities atiributed to
various modulation systems above are not binary digit signaling
rates. We have accepted at face value the value which the channel
capacity formula gives for the demodulated baseband channel,
and compared that with the rf power. This comparison is still
fair, however, if we are dealing exclusively with analog channels.

Detection as a Communication Process

4.1  Representation of Band-Limited Functions
on an Orthogonal Basis

Detection of a signal such as a radar echo in a background of
noise may he treated as a communication process also. Suppose,
for example, a situation exists where a signal s(f) may or may not
be present in a background of noise n{t). Let us suppose for illus-
tration that the Emﬂmmﬁb!ﬁ&wem Aniform.power. densily
spec! [_up-io-a-maximum-frequency-Z; that the signal falls
in the same frequency range, and that our ohservation is limited
to the period of time 0 < ¢ < 7, which is supposed to include all
of the nonzero part of the signal s(z).

61
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~ Using the sampling theorem as before, we can represent the
signal by a point in 2 T-dimensional space. It is convenient to
make a slight scale change and represent a function f(t) by*
T e i

s woe
MU%QSS - eﬁ\/gifﬁm‘

[I

f@)
where

| sin 207 (t — B/207)
o) = V2V = e Tw)

.
e ‘ = - %mﬁ%o
o= \M|mﬁ.\. W .ﬁ; m mme\?
Figures 4.1 and 4.2 show graphically how a function f(f) is built
up of such elements ¢. It is not hard to show that the set of func-

-~ = SIN27 WP
- N o= 27 WT
4 N
/ N
/ N\
7/ \
v ~ W e T
S T N

Figure 4.1 A pulse for consiructing band-limited functions
from equally spaced samples.

tions ¢;(t) are orthogonal and normal, i.e., that

” 0if I 5= I
,\IB&WANVQHA& dt = 1 Hm. k ”H

Given two functions f(z) and g(t), we can define a scalar product

2T W

f0)-g6) = 2. fig

From the foregoing integral relation it follows that

' % Upless otherwise indicated all sums are over the range (1,2T1) and all
integrals over the range (— @, «).
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@

e 2T
- f)g(e) dt = \ 2 fupa(t) Lgipu(t) dt = MHU&&Q
which provides an alternative formula for the scalar product.
Following this notation we let

.wﬁ_wv = M_wkamwu Anv M..;zm:n

We may call the total mﬂmnmm energy S, and we see that, in m::&u_o
Ep:m: !

.\.%@ di =8 = Xs;°

The total noise energy is the product of noise spectral density
bandwidth, and time.

NWT = | n’@) di = Zng

The expected value of n? for any k is therefore N/2. To avoid a

sticky problem, we can assume the noise sample amplitudes ng

f § S 2T W~ 0
P T . N.‘ nSA 1}
R
el ~
\h!. //
7 ~
A\ A==
ll-ln!ll\\a/
! \
\
/ ¢
\
\
\
f, SIN 2w twT-21 \
2 TTETm AWT -2

Figure 4.2 A band-limited function synthesized from samples,
using the pulse of Figure 4.1.

have expected value zero and variance N/2 and that they are
Emowmnn_ma and normally distributed. .(See ﬁrm next mxﬂﬁmmv
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This is a satisfactory definition of white Gaussian noise of power
density spectrum /N and bandwidth V.

Exercise
A Note on Probability Distribution

In dealing with collections of numbers having properties
randomness, such as observations of electrical noise, it is
convenient to introduce certain concepts from statistical
analysis. In particular, let us assume we have a collection
of numbers %1, %s, %3, ..., %n, and define the following:

1 X
m = the mean = = 2_ x;

NiZy

N
s = the variance = & st —m
Nz

The mean is what we call in plain language the average.
The variance is more esoteric: The square root of the vari-
ance, s, is called the standard deviation, and is a measure of
the extent to which the numbers x; scatter from the mean
value m.

Under many circumstances the set of IV numbers is taken
from a much larger or infinite set, called the population.
This set of N numbers is then called a sample. The popula-
tion mean p and population variance ¢? are defined just as
the sample mean m and variance s%. If necessary, limiting
operations are used. If the number of elements NV in the
sample is large, we are often justified in treating the sample
mean m and variance s as about equal to the population mean
u and variance o2

If each element x,, of the population is the sum of a large
number of statistically independent numbers, then (with
cerlain technical restrictions) the distribution of values of
the elements %,, will approach a particular distribution, called
the Gaussian or normal distribution, characterized thus: In
any random sample of N elements, the number of elements
having a value between xg and xp + Ax is m—u?.aigmmm_%
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X0 — uY Ax
T o

NP
where P(z) is the normal probability distribution function

P —u?/2

V2r

The normal probability distribution has been extensively
studied, and is a satisfactory model for a wide variety of sta-
tistical phenomena. Sums and differences of normally dis-
tributed independent numbers are also normally distributed.
For example, we can take sums of the elements %, M at a time,
thus

Pu) =

M 2 (k1) M
Yo = M X, Y1 = M Xny Y = M Xn
1 M1 kM1

Then the population of all possible values of y; has a mean
Mpu and a variance Mo2 This and other properties of normal
distributions will be referred to often in the next sections,
and are described and proved in texts on probability.

4.2  Signal-to-Noise Ratio Required for Reliable Detection

Now let us consider the detection problem where the noise
field n(t) is present, and the signal s(t) may or may not be present.
We observe a received signal f(z) where

f(#) = s(t) + n() = 2 (s« + ni)¢r when the signal is present

= n(t) = > N when the signal is absent

Figure 4.3a and b illustrates a pair of such waveforms. When no
signal is present, the expected value of each coordinate f; is zero,
and its variance is N/2. When the signal is present, the expected
value of f} is sx, and the variance is still V/2.

Now we introduce the geomeirical concept of rotation of co-
ordinates. The probability distribution of our observations is
spherically symmetrical with respect lo their cenlers, and hence
retains the same form with a rotalion ol axes, that is, the proba-
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n(t)+s(t)

o ——— i
~
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Figure 4.3 Noise n(f) with and without a low-level signal s(¢).

bility distribution of the new coordinate will still be normal with
variance N/2 regardless of the new directions of the axes.

For skeptics, we shall illustrate these concepts for the simplest
nontrivial case, two dimensions. Suppose x and y are given, sla-
tistically independent, with normal distribution about 0 with
variance N/2. Rotate the coordinate axes by an angle 6. Then

w = xcos b+ ysin 0
v= —xsinf + ycosd
Let us look now at the mean® and variance of w:

I=uxcosf+ysinl =%Xcosf+ ysinf =0

I

e (xcos 6 + ysin 6) = x?cos? 0 + 2xy sin 6 cos § + y*sin? 0

N N .
=\3 cos® 0 + B sin® @ -+ xy-2 sin 6 cos

* A ‘horizontal bar over an expression signilies an average taken over a
suitable range, usually an average over the statistical ensemble or a lime
average. Under a wide range of circumstances of interest (those satisfying
ergodic conditions), the ensemble average and the lime average are equal.

SIGNAL-TO-NOISE RATIO REQUIRED 07

Note that the assumption that x and y are independent means

simply that ¥y = & ¥, which implies ¥ = 0. Hence

=
Il

52 = pu? — g% =

Nz relz

Similarly, the variance of v is N/2. Finally, u and v are statistically
independent, for

uv = (x cos @ + ysin §) (—=x sin 8 4 y cos 6)
= (—x*4+yHsinfcosf =0

Return now to the received signal f(f), and let us choose a new
set of coordinates so that one of the axes is parallel to s(f). Let
the basis for the new coordinate system be ¥, k=1, ---, 2T,
and let the coordinates on the new basis be distinguished with

primes (). The representation of s(f) in the new coordinate sys-

tem will consist of one term

s() = VS

so that obviously

1
Y1 =—sl(t)
V8
The noise is represented by
2WT
n(f) = Mw n' Y
o

Our problem is now that of distinguishing between
_ 27TW
s + n() = S+ n W+ M ni’ ¥, signal present

21w

n(t) = nid 1+ NM ni’ Y, signal ahsent

1@

Il
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Obviously, there is no point in examining any lerm bul the firsl. m
: Sy : : : Tapre 4.1
We can isolate the coeflicient of the first functlion, ¥, by using
scalar products. Probability of I'alse Alarm Error and of Miss Error as a Function of Threshold
: = 1 £ Level and Signal-to-Noise Ratio
fi=f0)¥:0) = \ W) de = T | fe)s() dt _
—m —o | Threshold
and test the hypothesis d = V/25/N = = T ,
| ¥pP 10/ V5 — VN2 VS — 2viN/2 )
S ' s ese |
i = VS +na, signal present FA Miss A Miss FA Miss i
_ W mm.mmbm.ﬁ 4 23x107% | 23 x 1072 | 1.4 X 107% [ 1.6 x 10~ |23 x 10-% | 2.3 x 10~
| fi = ny/, signal absent 5 6.2 X 10~% | 6.2 x 10-% | 3.2 10~ | 1.6 x 10~ |1.4 x 10-7 | 2.3 x 10-
. s ; ; 6 14 %1073 | 1.4 % 10-% | 29 % 10~7 | 1.6 x 10-! [3.2x 10~% | 2.3 x 10-2
We know that n," is normally distributed ahout zero with vari- 55w g | Basein=t L6 5 199 | L.8seams ke s | smsgrs ']
ance N/2 just like any among the original componenlts n, for we ! 3 X 10 — <0 X i ots ..
4 8 3.2 x10-% | 3.2 x 1079 | 2.6 x 10*2| 1.6 X 10-* | 2.0 x 10~ | 2.3 X 107

assumed a pure rotation of the coordinate syslem (even though ,
we never explicitly found the new coordinate system). The two
-distributions are illustrated in Figure 4.4. The problem is reduced and the penalty for missing it when it is present (which we call
miss) is the same as the penalty for detecting it when it is not
. Fdsor | , . present (which we call false m_m:._.ﬂ or I'A), then we would prob-
| ably put the threshold of detection near i4/S. This makes the
il error probability the same for the two circumstances. They are
SIENAL RS | shown in the first two columns of Table 4.1. In a true search

! situation, we are searching for a “needle in a haystack,” and the
signal is expected to be absent nearly always. Cutting down the
, false alarm rate becomes an operational problem, and it is advan-
o tageous to raise the threshold. The table shows two examples.

Iigure 4.4 Hu.powmw_:g .%m:%::o: of output of a no.rn_di .mm_mr:: In any case, a value of d of about 8 is needed, and we can say
i (i whose input consists of wavelorms like those in Figure 4.3. :

, roughly
. to that of identifying the quantity /S when perturbed by a noise . 25 8
with variance N/2. The ratio of the signal to the standard devia- . N
tion of the noise is 25 64
V/'N/2 N .

For reliable delection d must be somewhat greater than unity.

If the probability that s(t) will be present is about 50 per cenl, S~ 32N

T T
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Let us compare that practical signal-to-noise ratio with the ideal
case. Suppose we are concerned with a detection scheme in which
there are 1,000,000 cells to look in. If we look and find something,
then we have potentially distinguished among about 10° possi-

- bilities, and receive potentially about 20 bits. We shall, therefore,

expect to need

_ S = 20 X 0.693N = 13.9N
in signal energy.

However, there is error rate to consider. In a detection process,
a rather liberal error rate is allowable, say P(e) ~ .01. Referring
to the previously quoted formula

P(e) ~ 27"
we recall that 2” is the number of binary digits constituting a
message; by analogy, » = 20. Solving for R/C, one finds

m ~ 0.41

C

Hence, the amount of energy required in the signal to achieve an
error rate of 0.01 is really

0.693N
This agrees very well with the value 32\V derived above. The
agreement is not fortuitous: This case fits the hypothesis of
Fano’s model quite precisely.

Notice that an error probability of 0.01 still requires a low
false alarm rate: for the probability of a single false detection to
be .01 in 10° cells, the probability of a false alarm in each cell
must be less than 1078,

We see, therefore, that coherent detection, where viewed as a
communication process, achieves about as much as one could
expect. We need not look for new principles which will enable
us to detect signals having less energy, but can devote ourselves
to applying the conceptions of coherent detection and to engineer-
ing improvements to make the performance of such detectors live
up to their design conception.
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We can, of course, deliberately use a scheme like the one de-
scribed earlier as a communication scheme. In such a case, it is
usually impractical to search for one among a large number of
signals. Costas* has described a system in which one of two sig-
nals, +s(f) or —s(t), is sent. Each one is “noiselike” in the sense
of having no systematic pattern like a modulated carrier. The
probability of error is
Mlq\:

2v/7(log 2)C/R

when the signal-to-noise ratio is low. For P(e) = 10-5, C/R =~ 16.
This codé is an instance of orthogonal codes modified for sym-
melry about the origin, mentioned in a previous chapter, and the
estimates of error probability agree.

Ple) =

4.3  Alerted and Unalerted Detection

It was casually implied above that a false alarm rate of 10—% or
so is desirable for unalerted detection in a search problem. This
seems like an extraordinarily low rate of false alarms. Why is
such a low rate desirable? The answer lies in the implicit differ-
ence between search and demodulation: the same mathematical
description fits both, yet we sense that they differ.

The difference between search and demodulation is in the prob-
ability distribution of expected results. In a demodulation prob-
lem, we anticipale that the probability is distributed more or less |
uniformly among the two or more distinguishable outcomes. In
a search problem, it is anlicipaled that one outcome, “nothing,”
has probability nearly unity, and that the probabilities of other
possible outcomes are nearly infinitesimal.

Let us take an idealized example: Imagine a search radar, seek-
ing aircraft. Suppose it has a range of 100 miles, a pulse band-
width of 10 megacycles per second, an angular resolution of

ﬁ_mmanoumd&mnmsmmmmoﬁgoﬁ.mooomﬁ_:mawmmmemmmosnm@ﬁwwm
seconds. .

*J. P. Costas, “Poisson, Shannon, and the Radio Amateur,” Proc. IRE,
47, 2058-2068 (1959).
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If full use is made of the 10 megacycles per second bandwidth
with a coherent detector the output of the detector will have a
duration of about 107 second, more or less, depending on the
precise pulse spectrum. As far as the simple detector is concerned,
two events more than 10~7 second apart must be counted as inde-
pendent. The 100-mile beam takes over 10~* second to return.
Hence, there is an opportunity for 10* independent events in
each beam. Furthermore, scanning 2000 square degrees with a
resolution of 3 X } degree implies about 8000 more or less inde-
pendent beams. Therefore, in each complete scan, the number of
opportunities for independent events, which is the number of
cells which must be searched, is 8000 X 10* — roughly 10°. Now,
the actual number of targets actually anticipated is probably not
more than 10, or at most 100. Hence, the probability of seeing a
target in any one of the search cells is less than .000001, and the
probability of seeing nothing is greater than .999999. In fact, in
ordinary operation, many hours of scanning are likely for a few
minutes of detection, and the probability of seeing a target is more
likely to be about 107® or 107,

In order to decide where to set the threshold, it is necessary to
acknowledge that a false alarm costs something. For the sake of
argument, let us suppose that each false alarm requires some re-
sponse, say the attention of an operator for a few seconds with
some resulting action, at a cost which can be measured at 1 cent.
Suppose the false alarm rate is 1077, Then, a false alarm will pop
up about 10 times every 2 seconds, 150,000,000 times per year,
at a cost of $1,500,000 per year for false alarms only. The price
is exorbitant: The false alarm rate must be made lower.

The foregoing example is purely fictitious and does not corre-
spond to any real radar or any real search problem. The figures
are typical of any true search problem, and the result is always
the same; if the false alarm costs anything at all, even 1 cent, the
tolerable false alarm rate is infinitesimal. Fortunately, as we have
seen, the false alarm rate in a background of Gaussian noise can
be reduced from 10~ to 10~ by a 6-db increase in signal-to-noise
ratio.

Once an initial detection has been made, then the situation is

R e e 1 RS,
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different, because the a priori probabilities of seeing something
and seeing nothing are no longer so unequal. We fully expect to
see something with relatively few observations, and the situation
is more like demodulation again, with a higher allowable false
alarm rate.

Suppose, for example, that one radar like the one above makes
a detection, and another attempts to locate the same object. The
second radar may expect to look, say, over a 10-mile range interval
in a solid angle 2 degrees square. The number of independent
looks is around 104 Furthermore, a substantial false alarm rate
is tolerable for a short period. The over-all effect is an increase
of 3 or 4 orders of magnitude in the tolerable false alarm rate.
The effect of this is to allow a reduction of the detection threshold
by 3 or 4 db.

In an extreme case, the problem may be to confirm the existence
of a particular event in a single particular observation, and the
alerted operator has essentially only one single independent ob-
servation. Here a false alarm rate of .01 may be quite acceptable.
Under these circumstances, the threshold can be lowered 6 to 8
db. It is worth noting that the penalty for false alarm may seem
to be less in alerted detection, for if the alarm is false, the whole
burden of responsibility may be borne by the initial (unalerted)
detector rather than by the subsequent alerted detector.

In summary, according to this particularly simple model, the
detection threshold should be 3 to 8 db lower for alerted detection

_than for unalerted detection. The exact figure depends on the

penalty for false alarm and the nature of the search situation.

Exercise
Where Is the Information Located?

When the information generated by a source was defined,
some pages back, we had in mind a source which turned out
a stream of symbols or waveforms of comparable significance
and roughly equal probabilities, and, without making an issue
of it, we assumed that “information” flowed out at a steady
rale, so many bits per symbol. When we carry out a search,
however, we no longer have the feeling that every observa-
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tion is equally important. A priori we cannot, of course, dis-
tinguish one from another; but aflter the observation is made,
we are likely to consider it unimportant if nothing was ob-
served, but very important if something was detected. Is this
reflecled in the mathematical description of the information
flow? .

There is one straightforward way to identify information
with a particular message. If a particular message m;in the
ensemble of messages has probability p;, then define its in-
formation as

hi = —log p;

Then the average information, weighted, of course, to allow
for the respective probabilities of the various messages, is

2pihi =Y, —pilogp, = I

which is just the information rate of the source.

~ According to this definition, in a search where the proba-
bility of seeing nothing in a particular observation is .999 999,
the information delivered when nothing is seen is

—log».999999 = .00000144 bit

while the information delivered when something is observed is
—logz .000001 = 19.9 bits

" This way of attributing information to particular messages
is open to a number off objections. The whole concept of
information is based on looking forward to a message as yel
unknown, not backward upon a known message. After a
message has occurred, its probability is unity and the proba-
bility of any other message occurring in its place is zero.
Before the message has occurred, the most we can expect
from it is that it may resolve the uncertainty about what
message may come: This uncertainty exists before the message
comes, and is not a consequence of the particular message.
In conducting a search, we are uncertain before each ob-
servation whether there is or is not a target to be seen there.
After the observation, we know. The information in the ob-

servation is a direct measure of the uncertainty, in a precise
statistical sense, which is removed by making the observa-
tion. How can we decree after the ohservation that this was
different in the one case from the other?

However, the value of an idea is judged by its usefulness,
not by how well it fits into the logical framework of our pre-
vious knowledge. Relativity and quantum mechanics are im-
portant instances of useful theories which contradicted
accepted ideas of their time.

The preceding formula for the information in a specific
message has not, to the best of my knowledge, been usefully
applied anywhere in communication science. However, some-
thing analogous has been identified in a recent study of
musical meaning.* The author distinguishes two kinds of
evenls, normal or ordinary events representing some stand-
ard or the application of some set of rules, and exceptional
events, which deviate from the standard or break the rules.
He puts forward (among others) the thesis that meaning in
music is carried by the exceptional events, and that the normal
events are significant only in that they provide the standard
of comparison against which the others are judged to be ex-
ceptional. The analogy to our search situation is clear.

This thesis was put forward without any formulas and, I
suspect, in ignorance of what is today called information
theory. Professor Meyer might even find my formulation
obscure. (I pray he would not find that I have misinterpreted
his intention.) Nevertheless, it winds in and out through
many ‘chapters of his book and is put to good use in his
search for objective signs of meaning in music and the
relation this meaning has to emotion. As a result, I am a
good deal less confident that it is absurd to divide the infor-
mation in a source into little packages and associate each
package with a particular message. Perhaps some imaginative
philosopher may show us the way to do this without becoming
enmeshed in a web of contradictions and inconsistencies.

*Leonard B. Meyer, Emoiion and Meaning in Music, University of Chicago
Press, Chicago, 1956.
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Coherent and Incoherent Integration

5.1 Some Common Detectors

In a communication system, the alphabet of transmission sig-
nals will ordinarily be chosen so that one or another reasonably
eflicient demodulation process can be used. As we have seen, the
efficiency of a detection system may be analyzed with the same
mathematical tools. However, the designer of a detection system
may not be able to control the signal or the environment enough
to approach an optimum or eflicient modulation scheme. An im-
portant example is that of a search process where the signal to be
detected lasts a very long time, and where knowledge of its pres-
ence or absence is desired in a short time. This circumstance leads
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to the idea of detection in a fixed or limited time, or in the dis-
crete case, of detection with a limited number of observations.
Heuristically, it is clear that increasing the observation time or
the number of observations cannot decrease the certainty of detec-
tion, and should increase it. We are thus led to ask, how much is
the detection process improved by increasing the observation time?
We shall answer this question by suggesting a simple, plausible,
and easily implemented criterion of effectiveness involving both
observation time and signal-to-noise ratio, and show how increased
observation time can be traded for decreased signal-to-noise ratio.
Suppose we have noise n(f) of bandwidth IV, with a flat spectrum
and rms amplitude N. Suppose we have a signal of constant dec
amplitude S. If the noise is present alone, the received waveform is

If the signal is present also, we have
fe) =n@) +5

An example of such signals is shown in Figure 5.1. In this exam-
ple, N =1, 5§ = 1. We would like to examine the following com-
mon detection schemes

T

I. Correlation detector: \.H@m&a
o
T

II. Square-law detector: \\.\,ws dt
0

T
I11. Linear rectifier: \. Csc.: di
0

to find the relation among the signal-to-noise ratio S/V and the
integration time T. When the idea of detection is not uppermost,
the circuits that perform these functions are sometimes called
demodulators instead of detectors.

First, use the sampling theorem to characterize f(t) as a sequence

fo=FfE2W) k=1,2, .-, 2TW
n(k/2W)

Il
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78 COHERENT AND INCOHERENT INTEGRATION

Figure 5.1 shows how the samples are related to the continuous
function f(¢). The various samples f; are independent and have a
Gaussian distribution with variance /V? (to avoid another proof,

2 CONTINUOUS SIGNAL (1)
1 G
Py ATNNT /T
SAMPLE f ./ N
INERN
; 2w
f(t)=n(t)

3

2r m
N
/\?JJ/\?\?\;*\S
S N
o i

m|
| f{t)=n(t)+S

[

Figure 5.1 Random noise n(f) with and without superimposed signal
s(t) = S, showing samples.

we can define this as Gaussian white noise of bandwidth IF). To
a high degree of approximation, we can replace the integrals (with
appropriate constanl multiplying factors) by sums:

W

,a
L &%= Mbﬁm%wh LAOIS dt

2TW

q.
II. S = MRRM%\ £l de
1 0

2w

| H«
1 0

We shall ‘devote the rest of the discussion to the sums S;, Si,
and Sy, and try to see how they depend on the integration time
and signal-to-noise ratio. The constant 27 or 2/F/S is a scale
factor and is not important for the present discussion.
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5.2 Correlation Detector

Figure 5.2 shows the samples f, the squares of the samples f;2,
and the absolute values of the samples | fi| for the noise, with
and without signal, of Figure 5.1.

"= i (a) Ity 48 (b)
_ ____ _ __ H__

Lk T _ "K=2WT g K
, (c) tx® = (ng +3)® (d)

50,2 = ng? 5 A

0____. 1 LI __ —__,_n 0 *_h__ _ __7__7_H

e il = Ingl (e} 5 1fkl = Ing+sl (f)

o _._ _ | e Lt __ ____ 0

=
=

Figure 5.2 Samples, squares of samples, and absolute values of samples
in the ahsence and in the presence of signals.

If we look at the signal f(¢) at any instant; that is, if we look
at a single sample f3, it has

mean value u, = S, signal present

wo = 0, signal absent
variance o,? = /V?, signal present
oo? = N?, signal absent

The two variances are the same, and we can ignore the distinction
implied by the subscript. We can use (4, — wo)/c as a measure
of effectiveness of a detection process. For a single sample of the
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(a)

bné.p_.,s_.cmmaz?
~ — EXPECTED vaLUE | PRESENT

Zfy

ACTUALVALUE | signaL
EXPECTED vaLUE | ABSENT

2TW

{b)

ACTUAL VALUE
SIGNAL
PRESENT
-~ EXPECTED VALUE
-

2
Zfy EXPECTED VALUE
= SIGNAL
N ABSENT

ACTUAL VALUE

2TW

(c) ACTUAL VALUE SIGNAL
—~ EXPECTED vALUE|PRESENT
—
__ = EXPECTED VALUE| gignaL
ACTUAL VALUE | ABSENT

2 Ifl

Figure 5.3 Z fi, £ fi?, and Z | f;] in the absence and in the presence of
signals, compared with expected values.

signal, this is just the signal-to-noise ratio S/N. Figure 5.2a and b
shows the samples fi for the noise and for the signal plus noise
shown in Figure 5.1. Figure 5.3 shows the sum

m_H S MQJ“H Mﬁm+;&

as a function of 2TW. The expected value of S, is p, = 2TWS
and its variance is
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]

=[S +n)] [+ n)] — @TWS)?
> 3(S? 4+ Sn; + Sni + ning) — 2TWS)?
= QTS24+ 04 0 + >ns® — (2TWS)®
= Mw:nw
= 2TWN?

Repeating the computation with S = 0, we find that the mean
value and variance of 2 ny are po = 0 and oy = 2TWN2,

Figure 5.4a and b illustrates the distribution of observations to
be expected after F,Ewﬁﬁoi over a time such that 2Tl = 20 and
100 respectively. The observations are distributed approximately
in the well-known bell-shaped normal probability distribution.
The center of the normal distribution curve is at the expected
value u, and the standard deviation is ¢, the square root of the
variance. In order to make an effective detector, it is necessary
to set a threshold somehow so that an observation will nearly
always fall on one side of the threshold when the signal is present,
and nearly always fall on the other side of the threshold where
the signal is absent. Inasmuch as the probability distributions
overlap (the overlapping part is cross-hatched in the figure), there
is no place to establish a threshold which will give error-free
results. A reasonable and useful measure of the effectiveness is
the ratio of the distance between the peaks, p, — po, and the
width of the peak, measured by o. When only one sample is
taken, we have seen that the ratio is S//N. When 27 samples
are integrated in a coherent detector, the measure of effectiveness
is

T

e — o 2TWS —0 ——
= =2TW
7 /2T Nz 4 N
that is, the effect of integration over time T is equal to the effect

of improving the S/N ratio by a factor v/ 2T,

5.3 Square-Law Detector

In a square-law detector, the sample is squared to get f* = nz®

or (nx + 8§)% (Figure 5.2¢ and d). Let us examine the buildup of
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the sum,
Se = 2fit = 2(S + ny)?
= 2(5* + 25n; + n4*), signal present
or = M:%, signal absent

[ts expected value is

2TWS* + 2TWN?, signal present
and
2TWN?, signal absent

Figure 5.3b shows the actual growth of }_fi* compared with the
expected value, for both cases.

We could find the variance of Sy by brute force. However, it
is easier to work indirectly, and to define a new population whose
members are

zi, = 5% + 25ny + ng?

and find sample mean and sample variance, and work indirectly 1o
the sums.
If we define

ny = Nxg

then x; forms a normal population of variance unity, with a
probability distribution

2 -

The mean value of %2 is

Pla) = ——e™*/* du, \ Pla) do = 1

X = \ %'P(x) dx = 1

-0

The mean value of x;? is

X = \ x'P(x) dx = 3

S 0 B g R B S
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The mean values of x and «* are zero, because P(x) is a symmetric
(even) function. For nz, the means are

ni = N2
ngt = 3Nt
Now for
S% + 285n; + ngd

the mean value is

S* + 2Sns + na?

=540+ N
and the expected value of the sum is

pe = Lls +na)* = 2TW(S* + V)

The variance of (S + ny)? is
[S+nr)" ] — S+
St + 4S8 + 65, + 450 + nat — (ST N3)?
St 40 + 6S*N? 4 0 + 3NV* — 5% — 252N — N\&
= 452N? 4 2]V¢

It

Hence the variance of the sum is
o, = 2TW(45°N? + 2]V

By repeating the computation with S = 0, we can find
ue = 2TWN?
ao? = 2T N

Figure 5.4c and d shows normal distribution curves with these
means and variances for 2T = 20 and 100.

An aggravating factor here is that the variance is different when
the signal is present than it is when the signal is absent. Let us
agree that we are most interested in the case S/N < < 1. Then

T (ASN? + 2N8) ~ 2TV - 2Nt = ATIWN
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Figure 5.4 Distribution of observations [or coherent, square-law, and
linear rectifier detection for two different integration times.

(2TW = 20fora, ¢, and e; 2T'W = 100 for b, d, and £.)

independent of whether the signal is present.
Using the same criterion as before, we measure the effectiveness
of the detector by

pe = w0 _ 2TWLS" + N — (V)] _ A S v
7 VATV £

that is, integrating a time T is equivalent to improving S/N by a
factor VTW.

5.4  Linear Rectifier Detector

In a linear rectifier detector, the samples fi are rectified to get
|fel = |ni| or [ne -+ S| (Figure 5.2¢ and f), and the detector oul-
put after integration is

E, = M _.\q_.n_

Once again we examine the individual terms of the sum, and ask,

LINEAR RECTIFIER DETECTOR 35

what are the mean and variance of |f3|? :

Ifl = 1S+ nd =[S+ Nay

@

= Hﬂ 3 S 4 Nale™* dx

z=8/N

1 = (S Meve ™™

HM

Here we can evaluate the inlegral approximately by a tedious
but straightforward process, as follows:

Substitute

0 S/N S/N , 0 © %
,\. + .\, for \ and analogously .\\ -+ \ for .\.
e 0 i 8/N 0 S/N

Evaluate all integrals in (0, @) and («, 0) exactly. Evaluate
integrals in (—S/N, 0) and (0, S/N) by using the approximation

ey ]

The result is

7= )\WaA +m,wwv %AH

The expected value of the sum is
- 2TW A S mv
2 —
M 7.m + qs_w_ ./\Mq_. N + N

when the signal is present, and

= _ 2TW
=2 |ny) ~==2N
Y >
when the signal is absent. The difference is
2w S
Hs Mo ]

/2
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What about the variance? The mean square value is easy to
evaluate; for the absolute value operation is trivial when the
function is squared:

|S 4 14| = (§ -+ ng)? = S + N?

One must be careful not to jump to conclusions, however. The
mean value laboriously computed above must now be used.

var ”__m. |T :;“_J = _m [T :;n_u — _“_m -+ ::.n_um

Lty oA ANT 48" 1§
i =l i iy

. . . 2N* 28" St
o BET |8 A N~ = T

If S/N < < 1, this is approximately

sl 2TWN (1 - w

Similarly

sl = 2TwN (1 - 2
T

These probahility distributions are plotted in Figure 5.dc and f

for 2T = 20 and 100.

The measure of merit of the detector is

e = Ko 2TWS - (S/N)

o 2w 2TW = 2/x]- N
_{5 Q o\
N Ng—2
that is, the effect of integration for a time T is equivalent 1o the
eflect of improving

S i
av%mﬁmoﬂou. q_.llllllml

Note that this is just a shade worse than vTW.
The ratio is V'1.00/1.1416 or approximately 0.1 decibel.
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Exercise

Processing of Clipped Signals

Ofllen it is inconvenient or expensive to process signals
having a wide dynamic range, or it may be desirable to reduce
the output of a process to a finite number of states for digital
encoding. It is legitimate to ask what the penalty is.

The most extreme case possible is to reduce the output to
two states. If the relation of input to output is as shown in
Figure 5.5, this is called clipping.

OUuTPUT

+1

INPUT

INPUT N\ >\/
7

ouTPUT —‘_

)\/)\/
A\ N N ~

VA

g

L

L

M
L] L

Figure 5.5 Relation of oulput to input in an ideal clipper.
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Let us suppose we pass a wave f(f) into the clipper, and
suppose that f(t) consists either of a noise n(t), or of the
same noise plus a known signal s(t). Let us imagine, for in-
slance, that n(f) is a Gaussian, with uniform spectral density
in the band of frequency — W to W, and root-mean-square
value V. Suppose that the value of s() at a particular time
tois S. Let us look ai the output of the clipper.

The distribution of

Sf@to) = S + n(lo), signal present

= n(ty), signal absent

is shown in Figure 5.6. The clipper output is +1 if f(z) > 0.

DISTRIBUTION OF
S+n{lg)

DISTRIBUTION OF |
nito) fe—5—=|

1
vam

Figure 5.6 Distribution of n(t) and S + #n(t).

When the signal is present, this happens when
S+a) >0
n(ty) > —S

That occurs with probability

Pln(ty) > 5] = %i\ e du
V2N | -5

L[ e,
2 )\w -s/N

BoRTRE T

e e T s e
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—u? - .
For small values of S/IV, we can expand ¢~*/? in power series

and integrate to get
0 2 370
iﬁl AHIWVRSH!WTPIWIA—
2 J-sin 2 Vor 61 _s/w
el
V2x LN " 6\N.

PLfe) > 0] =3 ﬂw-w wb@ +g

Similarly,

_1s H@u
W DA AV H_

If Sous is the output of the clipper, its expected value is

DI =

Plf(t) < 0] =

s = Sout =1-P[ f(te) > 0]+ (—1)-P[f(to) < 0]

]

Noting that S,u2 = 1 for any input, it is easy to find the

AV o
¢ w 2

When the signal is absent,

po =0

Qcm”H

When S/N is very small, we can ignore higher order lerms

and get B
Be = Mo _ /\m S
7 ax N
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This shows that the effective signal-to-noise ratio is reduced
by v/2/x, or about 1.9 decibels. '

The loss is not entirely clearcut. We have lost 1.9 decibels
according to a particular criterion, but at the clipper output
we are no longer dealing with Gaussian noise of bandwidth
¥, nor is the noise even uncorrelated with the signal.

In fact, the clipping process makes the handwidth of the
clipper output greater than JV, and over a period of time T
we can integrate over more than 2TW samples to advantage.
It has been shown that about 1.2 of the lost 1.9 decibels can
be recovered il care is laken, and practical clipper detectors
usually sample al time intervals of about 1/5W rather than

1/2W.

5.5 Comparison Among Detectors

Table 5.1 summarizes the expected values and variances of the
outputs of these three kinds of detectors. The effect of integration
with a coherent detector over a time 7'is equivalent to an improve-

ment in the input signal-to-noise ratio of a factor v/ 2TTW. This
is sometimes stated as 3-decibel improvement per doubling of
integration ‘time. The effect of integration with an incoherent
square-law or linear rectifier detector over a time T is equivalent
(when the input S//V is low) to an improvement in the signal-to-
noise ratio of V'TIW or VTW/(r — 2) respectively. This is some-
times stated as 1.5-decibel improvement per doubling of integra-
Tion Time.

There is another respect in which the square-law and linear
rectilier detectors are inferior to the coherent detector. The dis-
tributions in Figure 5.4 and in Table 5.1 show that the expected
value of the output of a coherent detector depends on the signal
only, and the variances on the noise only, whereas in square-law
and linear rectifier detectors the expected values and variances
depend jointly on signal and noise. Now to a first approximation,
the best place to put the detection threshold depends on the ex-
pected value of the output, and not on the variance. This means
that the threshold can be set in a coherent detector independent

it S e
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TasLe 5.1

" Expected Value and Variance of the Outputs of Several Types of Detectors

Noise Only Signal Plus Noise
Expected Expected )
Value Variance Value Variance
Coherent 0 TN 2aTIvS 2TWN?
Detector -
Square-Law 2T N? 4TIFN? 2T (52 +-IV?) 2TV (452N2 4-2N9)
Detector
Linear AT 9 9T 52 . 9 St
Rectifer N grp(1-2) X (v mv oW Tmrﬁ:v AH J.ﬂv -
Detector V2r T/ o =

of the noise. This is not possible in linear or square-law detectors,
for the output wanders back and forth as the noise level varies.
Unless the noise is very uniform, as, for example, is thermal noise
in a low-noise electronic amplifier, some extra provision must be
made to compensate for secular variations in noise level.

These results were derived for a very particular signal wave-
form, a rectangular de pulse. The conclusions are quite generally
valid, however. The restriction to low input S/N is relatively
unimportant in most practical cases, for the output signal-lo-noise
ralio improves monotonically with the input signal-to-noise ratio
in all three of these detectors, and we can concentrate our atten-
tion on the ‘‘worst case,” where the signal-to-noise ratio is as low
as the system can stand. _

What is the difference between coherent and incoherent detec-
tion? In the geometric language in which we represent each of a
family of signals by a point in a space of 2IFT dimensions, co-
herent detection makes use of the direction of the point relative
to the coordinate axes as well as the distance, whereas incoherent
detection uses the distance only.

Is there any detection which is “‘inlermediate” between co-
herent and incoherent? Such systems have been described by

g
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Jacobs* and others. In the system described by Jacobs, a band
of the spectrum is divided into a number of discrete equal bands.
The signal is made up of bursts of energy, not overlapping in
time, and each is confined to one of the bands. Within each band,
the energy is detected incoherently.

Let us examine why this is partly ““coherent.” Suppose the
time duration of a burst is T, the total bandwidth is W, and
the bandwidth of each of k bands is W/k = B. Let us imagine
the signal represented not by its amplitude samples but by its
frequency components.

W
_ 2t . [ 2z7nt
fe) = mp an €08 | =5~ + b, sin -

(For convenience, it is assumed that the signal lies in the band of
frequency from 0 to W, but it could lie elsewhere with appro-
priate changes in representation.) The coeflicients a, and b, are
the coordinates, and the number of coordinates is 2T (give or
take a few, depending on whether we assume a dc term and
whether TW is an integer or not).

Now let us look at a signal falling in a particular band, say

mB<f< (m+1)B
This is representable by

(m+1)BT

2 ;
J@) = 2 Qn COS il + b, sin Zunt
n=mBT 41 M.- N.

involving only 2BT terms. The receiver filters the incoming signal
into a band mB < f< (m + 1)B, and hence makes use of the
fact that all components of f(¢) lie in a given subset of the pos-
sible directions. But after filtering, it uses an incoherent detector
which makes no further use of the detailed relations among the
components.

When the parameters are duly proportioned, this modulation

*I. Jacobs, “‘Optimum Integration Time for the Incoherent Detection of
Noise-Like Communication Signals,” presented at the 1962 Spring URSI
Meeting, May 1; “The Asymptotic Behavior of Incoherent M-ary Communica-
tion Systems,” Proc. Inst. Elec. Electronics Engrs., 51, 250-251 (1963).
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and detection scheme is reasonably efficient. In the band in which
it falls, the transmitted signal should have a spectral power density
about three times that of the noise for most efficient transmission.
For most efficient performance, the number of bands, k, should be
hundreds, and the information transmitted per burst is logs k.
The burst length is of the order of magnitude 20/B, and the
optimum is more or less dependent on the number of bands, k.
The amount of power required per bit is about 60 (0.693N) for
k = 2 and falls to about 10 (0.693N) for & of several hundreds.
As the number of bands % approaches infinity, the amount of
power required approaches the theoretical limit of 0.693N. On
this basis, it is competitive with AM, SSB, FM, and I'M with feed-
back. :

Why would such a modulation scheme be used? The detailed
signal structure required for coherent detection is destroyed or
degraded by such phenomena as Doppler shift, which obscures
small frequency shifts, or multipath propagation, which destroys
small time distinctions. With a signal in a band of total bandwidth
kB and time duration 20/B, we should require frequency discrim-
ination approximating B/20 or time discrimination approximating
1/kB to make coherent detection possible, whereas this system
operates with much coarser frequency bands of bandwidth B and
much coarser time segments of length 20/8. In round numbers,
its frequency discrimination is 10 times coarser or its time dis-
crimination 1000 times coarser than those required by coherent
detection schemes depending exclusively on frequency discrimina-
tion or time discrimination, respectively.

Exercise
What If the Noise and the Signal Are Interdependent?

In the examples cited up to now, it has been assumed that
the amount of noise, which is represented by the variance of
the observations, is independent of the signal. A look at
Figure 5.4 shows that this is not universally true: Both for
square-law and for linear rectifier detectors, the variance of
the observation is greater when a signal is added to the noise
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than when the noise is examined without the Em:& Under
these circumstances, the expression
Hs — Ho
a
is ambiguous, for we cannot tell which ¢ to use: ¢y, o, or
something between.

Show that if the threshold is set so there is a 50 per cent
probability of missing the signal when it is present, then oy
is the one to use in the above formula.

Show that if the threshold is set for a 50 per cent proba-
bility of a false alarm when no signal is present, then o, is
the appropriate one to use.

Consider the operational usefulness of both those thresh-
old sellings.

Exercise
Receiver Operating Characteristic (ROC)

The previous exercise shows thal the effective signal-
to-noise ratio may depend on the location of the threshold of
the detector. If the probability of detection is plolted as a
function of false-alarm probability for various threshold
seltings, the resulting curve is known as a receiver operating
characteristic, or ROC. A set of ROC’s for various input signal-
to-noise ratios characterizes the sensitivity or detection per-
formance of a receiver or demodulator. Figure 5.7 is a set of
ROC’s equivalent to the information in Table 4.1.

The scales are not linear: the scales are graduated in lerms
of the probability integrals ®(x) and ®(y), where

|H y —u?/2
® (z) = v e du
It is plotted on probability paper for two reasons: First, the
scales are greatly expanded in the neighborhood of 0 and 1;
and second, for most ordinary detectors the ROC’s are a family
of nearly straight, nearly parallel lines, which makes it easy
Lo interpolate from a [ew points.
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Show that for the case discussed in Section 4.2, whose
results are tabulated in Table 4.1, the ROC’s are precisely
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Figure 5.7 Receiver operating characteristic when a signal of known

waveshape is detected by a correlation detector in white Gaussian noise.

parallel straight lines ﬁ;:wb plotted on probability paper like
that of Figure 5.7.

- Exercise
The Ambiguity Diagram

In discussing demodulation and detection, we have tacitly
assumed that we are looking for, or at, one signal at most.
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In real life, we may be looking for many signals at the same
time, or we may be in doubt about where the signal is that
we are looking for. If our equipment responded only to the
“right” signal, and made no response to anything else, then
it would be easy to sift out returns from multiple signals.
However, theoretical and practical limitations prevent this:
The response of the detector is not zero for every unwanted
signal,

A particular case of interest is that in which a signal such
as a radar return could arrive at any of a number of times,
depending on the exact locations of particular targets, and with
any of a number of Doppler shifts, characteristic of their re-
spective speeds. The detector may be set to receive a return
at a particular time and with a particular Doppler shift. Tts
response to other returns, as a function of time displacement
and Doppler displacement, is called the ambiguity function
of the detector. When an unwanted return appears at a range
and speed where the detector ambiguity function is large, the
detector is in danger of identifying it as a true target.

If the ambiguity function is represented graphically as con-
tours or a multidimensional curved surface, it is called an am-
biguity diagram.

A simple description of ambiguity diagrams and their use
in sonar is contained in a paper by Stewart and Westerfield.*
They show several examples. A more detailed discussion is
found in Reference 9 of the Bibliography.

In many cases of practical interest, the variables in which
the ambiguity function is expressed can be chosen so that
the volume enclosed by the ambiguity diagram, conceived as
a three-dimensional solid, is a system invariant independent
of most of the system design variables. In many instances,
this permits general conclusions which are intuitively easy
to understand and have direct practical consequences.

*J. L. Stewart and E. C. Westerfield, A Theory of Active Sonar Detec-
tion,”” Proc. IRE, 47, 877-881 (1959).

Conclusion

Where, now, has this comparison of modulation and detection
systems brought us? It has been shown that there iz a minimum
average energy required to transmit 1 bit of information in the
presence of random noise of fixed intensity and uniform spectral
distribution. The degree to which amplitude modulation, single-
sideband modulation, frequency modulation, frequency modula-
tion with feedback, and a particular {requency-band-limited noise-
pulse modulation system approach the ideal has been estimated,
and all were found to require 3 to 100 times more energy per bit
than the ideal minimum. Detection of a signal in a noisy back-
ground, as in a radar, was viewed as a communication process,
and it was found that the energy required per bit of effective in-
formation received is only slightly more than the ideal minimum.

Implicitly, we have seen how to encode an information-carrying
signal of relatively narrow bandwidth and high signal-to-noise

97
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ratio in a new form having broad bandwidth and low signal-to-noise
ratio. When the formula for channel capacity was developed,
it became obvious at once that channels having a high signal-
Lo-noise ratio used more power than is necessary to transmit their
information. On the other hand, for a communication channel to
be useful to the ultimate users, the received message must have
a relatively high message-to-noise ratio, that is, the error rate
must be low. In all of the more straightforward and naive ways of
modulating and demodulating, the signal is so much like the mes-
sage that to keep a high message-to-noise ratio, we must have a
high signal-to-noise ratio.

The derivation we gave of the channel-capacity formula sug-
gests one relatively complex way to signal through a noisy channel
without introducing errors into the message: by using almost
countless numbers of noiselike waveforms as an alphabet of digital
signals. This solution to the problem is conceptually easy to
handle, and on paper allows us to reach significant results. How-
ever, everyone seems to agree that this is an undesirable way to
modulate and demodulate, or to code and decode, because it would
require extremely complex equipment. Frequency modulation with
feedback is a way of making a trade among bandwidth, power, and
signal-to-noise ratio which realizes some of the possible gains.
Practical digital coding devices are just being developed which
allow further reduction in error rate or signal power, but at the
expense of very complex terminal equipment.

Other advantages besides saving of transmitter power arise from
the efficient use of a communication channel. For example, if we
consider the efficient utilization of space in our signal space of
2WT dimensions, we realize that in signal space any noise is as
good as any signal, and no signal is any better than any noise.
Thus, we find that in such a context it is impossible to have
especially obnoxious jamming signals. There is no more efficient
signal for jamming than random noise, and we already know that
under these circumstances the system can be designed to operale
with a very low signal-to-noise ratio. We can see that to jam such
a system successfully, we must put into the receiver more jam-
ming power than signal power. This makes jamming costly.
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There is another benefit from operating with a very low signal-
{o-noise ratio. If we can really work a communications system so
that the signal power level is much lower than the noise power
level, we introduce the possibility of signaling in such a way
that it is hard to tell whether any signal is being transmitted at
all. We can thus indirectly make the jamming problem more diffi-
cult again, for the jammer must first hunt around to find out
where there is something to jam before he knows whether to
waste his effort trying to jam it.

By looking af searching for the presence of a signal as a com-
munication process, we have learned that there is a limit to the
detectability of a single signal in a noise background, and that this
limit is described in terms of the noise energy density and the
received signal energy. The shape of the signal wave is not sig-
nificant as long as it is fully known in advance to the detector.
The process of measuring the correlation between the known
signal waveform and the received wave is known as coherent
detection. If the signal waveshape is not completely known, cer-
tain kinds of incoherent detection, which vary according lo the
degree of ignorance of the signal waveshape, are possible. The less
that is known about the signal waveshape, the more signal energy
is required to assure pogitive detection. If the signal is a single
pulse or a burst of a sinusoidal wave, one can use very simple
detectors which approach the theoretical limit of search perform-
ance. Many signals which at first contact appear to be quite spe-
cific, such as, for example, the acoustic signal resulting from the
spoken sound “ee,” do in fact vary over a wide range, and are
correspondingly hard to detect reliably.

In summary, the ultimate limit to the rate of transmission of
information in a noisy background, or to the detection of a signal
in a noisy background, is primarily determined by the noise power
density and the signal power or energy. To approach this theo-
retical limit, the receiver must have precise detailed knowledge
of the possible waveshapes of the transmitted signal. In the ab-
sence of such knowledge, more signaling power or energy is
required.
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